Momentary Speed

v=dxdtv=\frac{dx}{dt}

Momentary Acceleration

a=dvdt=d2xdt2a=\frac{dv}{dt}=\frac{d^2x}{dt^2}

Momentum

p=mv\bf{p} = m \cdot \bf{v}

Force

F=dpdt=ma\textbf{F} = \frac{d\bf{p}}{dt} = m \cdot \bf{a}

Gravitation

F=Cm1m2r2F = C \cdot \frac{m_1 \cdot m_2}{r^2}

Centripetal Acceleration

ac=v2r=rω2a_c = \frac{v^2}{r} = r \omega^2

Work

W=x1x2F(x)dxW = \int_{x_1}^{x_2} F(x) \,dx

Kinetic Energy

K=mv22K = \frac{m \cdot v^2}{2}

Potential Energy

W=ΔU,F=dUdxW = -\Delta U, \, F = -\frac{dU}{dx}

Reduced Mass

1μ=1m+1M\frac{1}{\mu} = \frac{1}{m} + \frac{1}{M}

Angular Frequency

ω=2πf=2πT\omega = 2\pi f = \frac{2\pi}{T}