Statics

Coulombs law

The force F on a point charge q_1 at the point $\mathbf{r_1}$ caused by a point charge q_2 at the point $\mathbf{r_2}$

$$F = \frac{q_1 q_2}{4\pi\varepsilon_0 |r_1 - r_2|^2} \frac{(r_1 - r_2)}{|r_1 - r_2|}$$

Electric Field Strength

From a point charge q in r'

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{q}{4\pi\epsilon_0 R^2} \boldsymbol{e}_R$$

From charge distribution

$$\boldsymbol{E}(\boldsymbol{r}) = \int \frac{1}{4\pi\epsilon_0 R^2} \boldsymbol{e}_R dq(\boldsymbol{r}'),$$

$$dq(\mathbf{r}') = \begin{cases} \rho_{tot}(\mathbf{r}')dv' = \rho(\mathbf{r}') + \rho_p(\mathbf{r}'))dv'\\ \rho_{tot,s}(\mathbf{r}')dS' = \rho_s(\mathbf{r}') + \rho_{p,s}(\mathbf{r}'))dS'\\ \rho_l(\mathbf{r}')dl' \end{cases}$$

From point dipole $\boldsymbol{p} = p\boldsymbol{e}_z$

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{p}{4\pi\epsilon_0 r^3} (2\cos(\theta)\boldsymbol{e}_r + \sin(\theta)\boldsymbol{e}_\theta)$$

From line charge ρ_l

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{\rho_l}{2\pi\epsilon_0 r_c} \boldsymbol{e}_{r_c}$$

From dipole line $\boldsymbol{p}_l = p_l \boldsymbol{e}_x$

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{p_l}{2\pi\epsilon_0 r_c^2} (\cos(\varphi)\boldsymbol{e}_{r_c} + \sin(\varphi)\boldsymbol{e}_{\varphi})$$

Electrical Potential

$$\boldsymbol{E} = -\boldsymbol{\nabla}V$$

From pointsource q in r'

$$V(\boldsymbol{r}) = \frac{q}{4\pi\epsilon_0 R}$$

From charge distribution

$$V(\boldsymbol{r}) = \int \frac{1}{4\pi\epsilon_0 R} dq(\boldsymbol{r}')$$

From point dipole $\boldsymbol{p} = p\boldsymbol{e}_z$

$$V(\mathbf{r}) = \frac{\mathbf{p} \cdot \mathbf{r}}{4\pi\epsilon_0 r^3} = \frac{p\cos(\theta)}{4\pi\epsilon_0 r^2}$$

From line charge ρ_l

$$V(\boldsymbol{r}) = \frac{\rho_l}{2\pi\epsilon_0} \ln\left(\frac{1}{r_c}\right)$$

From dipole line $\boldsymbol{p}_l = p_l \boldsymbol{e}_x$

$$V(\boldsymbol{r}) = \frac{p_l}{2\pi\epsilon_0} \frac{\cos(\varphi)}{r_c}$$

Electrical flow density

Where \boldsymbol{D} is defined by $\boldsymbol{\nabla} \boldsymbol{D} = \rho$

Gauss law, where e_n is the unit normal to the volume surface pointing outwards P, E and D:

$$\begin{cases} \boldsymbol{D} = \epsilon_0 \boldsymbol{E} + \boldsymbol{P} & \text{(valid generally)} \\ \boldsymbol{D} = \epsilon_r \epsilon_0 \boldsymbol{E} \end{cases}$$

Polarization Charge

$$\rho_p = -\boldsymbol{\nabla} \cdot \boldsymbol{P} \qquad \text{space charge density}$$

 $\rho_{p,s} = \boldsymbol{e}_{n1} \cdot (\boldsymbol{P}_1 - \boldsymbol{P}_2)$ surface charge density

where the unit normal e_{n1} is directed from 1 to 2.

Boundary Conditions

,

$$\begin{cases} E_t \text{ continuous} \\ \rho_s = \boldsymbol{e}_{n2} \cdot (\boldsymbol{D}_1 - \boldsymbol{D}_2) \end{cases}$$

where ρ_s is free surface charge density and e_{n2} is directed from volume 2 to volume 1.

Electrostatic Energy

$$W_e = \frac{1}{2} \sum_i Q_i V_i$$
$$W_e = \frac{1}{2} \int \rho V \, dv$$
$$W_e = \frac{1}{2} \int \boldsymbol{E} \cdot \boldsymbol{D} \, dv$$

Maxwell's voltage

$$|T| = \frac{1}{2} E \cdot D$$
 E is a bisector to e_n and T

Torque on Electrical Dipole

$$m{T}_e = m{p} imes m{E}$$