Geometrical Optics

Refraction in spherical surface

$$\frac{n_1}{a} + \frac{n_2}{b} = \frac{n_2 - n_1}{R}$$

Gauss Formula

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$$

Lateral Enlargement

$$M \equiv \frac{y_b}{y_a} \qquad M = -\frac{b}{a}$$

Focal Length Curved Mirror

$$f = -\frac{R}{2}$$

Refractive Power (Lens)

$$B \equiv \frac{1}{f} = (n-1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

Lens

Lens with refractive index n_1 in medium with refractive index n_2 :

$$B \equiv \frac{1}{f} = \left[\frac{n_1}{n_2} - 1\right] \cdot \left[\frac{R_2 - R_1}{R_1 \cdot R_2}\right]$$

Aparture Number

$$b_t \equiv \frac{f}{D}$$

Depth of Field

$$s \approx \frac{a^2}{1000f} b_t$$

Angular Magnification of Magnifier

$$G = \frac{d_0}{f}$$
 where, $d_0 = 25 \,\mathrm{cm}$

Angular Magnification of Microscope

$$G = |M_{ob}| \cdot G_{ok} = \frac{L}{f_{ob}} \frac{d_0}{f_{ok}}$$

where the tube length L = 16 cm

Angle magnification of the Kepler and Galileo binoculars

$$G = \left| \frac{f_{ob}}{f_{ok}} \right|$$

Refraction in a spherical surface

Positive if: C is to the right of O Positive if: A is to the left of O Positive if: B is to the right of O Positive if: F_A is to the left of O Positive if: F_B is on the right of O Image with thin lens in air Positive if: the lens is convex (gathers light) Positive if: the object is to the left of the lens Positive if: the image is to the right of the lens Positive if: the object is above the optical axis Positive if: the image is above the optical axis Positive if: the image is upside up Image with a curved mirror Positive if: C is to the right of O (convex) Positive if: F is to the left of O (concave) Positive if: A is to the left of O Positive if: B to the left of O Positive if: the image is upside up

Refractive Index for Some Materials

Refractive Index with $\lambda = 589 \,\mathrm{nm}$ at 20 °C:

1,333
1,353
1,361
1,455
1,501
1,628
1, 31
1,544
1, 59
1,487
1,517
1,542
1,620
1,728
1,922
1,458
1,49-1,52
2,417