Oscillations

Simple harmonic occilations are described by

$$
\frac{d^{2} y}{d t^{2}}+\omega^{2} y=0
$$

With real solutions on the form

$$
y=A \sin (\omega t+\alpha)
$$

Angular Frequency

$$
\omega=\frac{2 \pi}{T}=2 \pi f
$$

Energy for Elastic Pendulum

$$
\begin{gathered}
W_{p o t}=\frac{k y^{2}}{2} \\
W_{t o t}=\frac{m}{2} A^{2} \omega^{2} \\
\omega=\sqrt{\frac{k}{m}}
\end{gathered}
$$

Angular Frequency

$$
\omega=\frac{2 \pi}{T}=2 \pi f
$$

Wave Number

$$
k=\frac{2 \pi}{\lambda}
$$

