Rydberg

ν~=1λ=R(1n21m2)Z2\tilde{\nu} = \frac 1 {\lambda} = R\left(\frac 1{n^2} - \frac 1{m^2}\right)Z^2
En=hcRZ2n2E_n = -hcR\frac{Z^2}{n^2}
hcR=me(e2/4πϵ0)222=13.606  eVhcR_\infty = \frac{m_e(e^2/4\pi\epsilon_0)^2}{2\hbar^2} = 13.606 \;\textup{eV}
R=RMNme+MNR = R_\infty\cdot\frac{M_N}{m_e + M_N}

Alkaline-like System

n=nδln^* = n - \delta_l
E=hcRZ02n2E = -hcR_\infty \frac{Z_0^2}{n^{*2}}
ΔEFS=Zi2Z02n3l(l+1)α2hcR\Delta E_{FS} = -\frac{Z_i^2Z_0^2}{n^{*3}l(l + 1)}\alpha^2hcR_\infty

Hydrogen-like Atoms

V(r)=Ze24πϵ0r=Ze02rV(r) = -\frac{Ze^2}{4\pi\epsilon_0r} = -\frac{Ze_0^2}r
a0=24πϵ0mee2a_0 = \frac{\hbar^24\pi\epsilon_0}{m_ee^2}

In Bohrs model of the atom:

rn=a0n2/Zr_n = a_0n^2/Z

Radial Functions for Hydrogen-like Systems

R1,0=(Za0)3/22eZr/a0R_{1,0} = \left(\frac Z{a_0}\right)^{3/2}2e^{-Zr/a_0}
R2,0=(Z2a0)3/22(1Zr2a0)eZr/2a0R_{2,0} = \left(\frac Z{2a_0}\right)^{3/2}2\left(1 - \frac{Zr}{2a_0}\right)e^{-Zr/2a_0}
R2,0=(Z2a0)3/223Zr2a0eZr/2a0R_{2,0} = \left(\frac Z{2a_0}\right)^{3/2}\frac{2}{\sqrt{3}}\frac{Zr}{2a_0}e^{-Zr/2a_0}

Spherical Surface Functions

lmΥlm(θ,φ)00Υ00=14π10Υ10=34πcosθ1±1Υ1±1=±38πsinθe±iφ20Υ20=516π(3cos2θ1)2±1Υ2±1=±158πsinθcosθe±iφ2±2Υ2±2=1532πsin2θe±2iφ\def\arraystretch{2.5} \begin{array}{ccc} \hline l & m & \Upsilon_l^m(\theta, \varphi) \\ \hline 0 & 0 & \Upsilon_0^0 = \frac 1{\sqrt{4\pi}} \\ 1 & 0 & \Upsilon_1^0 = \sqrt{\frac 3{4\pi}}\cos\theta\\ 1 & \pm1 & \Upsilon_1^{\pm1} = \pm\sqrt{\frac 3{8\pi}}\sin\theta e^{\pm i\varphi}\\ 2 & 0 & \Upsilon_2^0 = \sqrt{\frac 5{16\pi}}\left(3\cos^2\theta - 1\right)\\ 2 & \pm1 & \Upsilon_2^{\pm1} = \pm\sqrt{\frac {15}{8\pi}}\sin\theta\cos\theta e^{\pm i\varphi}\\ 2 & \pm2 & \Upsilon_2^{\pm2} = \sqrt{\frac {15}{32\pi}}\sin^2\theta e^{\pm 2i\varphi}\\ \hline \end{array}

Hamilton Operator for Multi-electron Systems

H=i=1N(22mi2Ze2/4πϵ0ri+j>iNe2/4πϵ0rij)\bm H = \sum_{i=1}^N\left(-\frac{\hbar^2}{2m}\nabla_i^2 - \frac{Ze^2/4\pi\epsilon_0}{r_i} + \sum_{j>i}^N\frac{e^2/4\pi\epsilon_0}{r_{ij}}\right)
LMLl1LML=l1LL(L+1)LMLLLML\braket{LM_L|l_1|LM_L} = \frac{\braket{l_1\cdot\bm L}}{L(L + 1)}\braket{LM_L|\bm L|LM_L}

LS coupling

Terms:{L=l1l2,...,l1+l2S=s1s2,...,s1+s2\textup{Terms:}\quad \begin{cases} L = |l_1 - l_2|,...,l_1 + l_2 \\ S = |s_1 - s_2|,...,s_1 + s_2 \end{cases}
Levels:J=LS,...,L+S\textup{Levels:} \quad J = |L - S|,...,L + S

Zeeman Effect

EZE={gJμBBMJ(fine structure)gFμBBMF(weak field, hfs)gJμBBMJ+AMIMJ(strong field,  μBB>A)E_{ZE} = \begin{cases} g_J\mu_BBM_J & \textup{(fine structure)} \\ g_F\mu_BBM_F & \textup{(weak field, hfs)} \\ g_J\mu_BBM_J + AM_IM_J & \textup{(strong field},\; \mu_BB > A) \end{cases}

Connection between magnetic moment and momentum

gS=2g_S = 2
gJ=32+S(S+1)L(L+1)2J(J+1)g_J = \frac 32 + \frac{S(S + 1) - L(L + 1)}{2J(J + 1)}
gF=gJF(F+1)+J(J+1)I(I+1)2F(F+1)g_F = g_J\frac{F(F + 1) + J(J + 1) - I(I + 1)}{2F(F + 1)}
μI=gIμNI\bm\mu_I = g_I\mu_N\bm I

Doppler Width

ΔωDω0=2ln2uc1.7uc\frac{\Delta\omega_D}{\omega_0} = 2\sqrt{\ln 2}\frac u c \approx 1.7\frac u c

Most Probable Speed

u=2230T300Mm/su = 2230\sqrt{\frac T{300M}}\quad \textup{m/s}

Dopplershift

δ=kv=ωvc\delta = kv = \frac{\omega v}c

Natural Width

ΔωN=Γ=A21=11τ\Delta\omega_N = \Gamma = A_{21} = 1\frac 1{\tau}
ΔfN=ΔωN2π\Delta f_N = \frac{\Delta\omega_N}{2\pi}

Hyper Fine Structure

H=μIBe=AIJH = -\bm\mu_I\cdot\bm B_e = A\bm I\cdot\bm J

For S-electrons in Hydrogen-like Systems

A=23μ0gSμBgIμNZ3πa03n3A = \frac 23\mu_0g_S\mu_Bg_I\mu_N\frac{Z^3}{\pi a_0^3n^3}

Boltzman Distribution

N2N1=g2g1eΔE/(kT)\frac{N_2}{N_1} = \frac{g_2}{g_1}e^{-\Delta E/(kT)}

Integrals

0xneαxdx=n!αn+1\int_0^\infty x^ne^{-\alpha x}\: dx = \frac{n!}{\alpha^{n + 1}}
0x2n+1eαx2dx=n!2αn+1\int_0\infty x^{2n + 1}e^{-\alpha x^2}\: dx = \frac{n!}{2\alpha^{n + 1}}
0eαx2dx=12πα\int_0^\infty e^{-\alpha x^2}\: dx = \frac 12\sqrt{\frac{\pi}\alpha}
0x2neαx2dx=(2n1)!!2(2α)nπα\int_0^\infty x^{2n}e^{-\alpha x^2}\: dx = \frac{(2n - 1)!!}{2(2\alpha)^n}\sqrt{\frac{\pi}{\alpha}}

Operators

p=i\bm p = -i\hbar\nabla
L=ir×\bm L = -i\hbar\bm r\times \nabla
H=22m2+V(standard)\bm H = -\frac{\hbar^2}{2m}\nabla^2 + V \qquad \textup{(standard)}
2=1r2r2r+1r2(2θ2+1tanθθ+1sin2θ2φ2)\nabla^2 = \frac 1r\frac{\partial^2}{\partial r^2}r + \frac 1{r^2}\left(\frac{\partial^2}{\partial\theta^2} + \frac 1{\tan\theta}\frac{\partial}{\partial\theta} + \frac 1{\sin^2\theta}\frac{\partial^2}{\partial \varphi^2}\right)

Dirac Notation

<H>=<ψHψ>=RψHψdv<\bm H> = <\psi|\bm H|\psi> = \int_{\mathbb{R}} \psi^* \bm H \psi\: dv

Commutators

[A,B]=ABBA[A,B]=[B,A][A,B+C]=[A,B]+[A,C][AB,C]=A[B,C]+[A,C]B\begin{gathered} [A, B] = AB - BA \\ [A, B] = -[B, A] \\ [A, B + C] = [A, B] + [A, C] \\ [AB, C] = A[B, C] + [A, C]B \end{gathered}

Schrödinger Equation

Hψ=Eψ(time independent)\bm H\psi = E\psi \qquad \textup{(time independent)}
Hψ=itψ(time dependent)\bm H\psi = i\hbar\frac{\partial}{\partial t}\psi \qquad \textup{(time dependent)}
ConfigurationniliωiTermsL  and  S(2S+1L)LevelsJStates (ZE-sublevels)MJHyperfiniva˚erF\def\arraystretch{1.5} \begin{array}{cc} \hline \textup{Configuration} & \prod n_il_i^{\omega_i}\\ \textup{Terms} & L \;\textup{and}\; S(^{2S + 1}L)\\ \textup{Levels} & J\\ \textup{States (ZE-sublevels)} & M_J\\ \textup{Hyperfinivåer} & F\\ \hline \end{array}
1ΔJ=0,±1(J=0J=0)level2ΔMJ=0,±1(MJ=0Mj=0  if  ΔJ=0)state3break parityconfiguration4Δl=±15ΔL=0,±1(L=0L=0)term6ΔS=0term\def\arraystretch{1.5} \begin{array}{cccc} \hline 1 & \Delta J = 0,\pm 1 & (J = 0 \nleftrightarrow J' = 0) &\textup{level}\\ 2 & \Delta M_J = 0,\pm 1 & (M_J = 0 \nleftrightarrow M_{j'} = 0 \;\textup{if} \; \Delta J = 0) &\textup{state}\\ 3 & \textup{break parity} & & \textup{configuration}\\ 4 & \Delta l = \pm 1 & & \\ 5 & \Delta L = 0,\pm 1& (L = 0 \nleftrightarrow L' = 0) &\textup{term}\\ 6 & \Delta S = 0& &\textup{term}\\ \hline \end{array}
1,21, 2

are replaced for similar formulas for

FF

and

MFM_F

if

FF

is a good quantum number.

5,65, 6

only hold if

LL

and

SS

are good quantum numbers.

Fine Structure - LSHyper Fine Structure - IJinteractionβLSAIJmomentJ=L+SF=I+Jeigen-statesLSJMJIJFMFenergyβ/2(J(J+1)L(L+1)S(S+1))A/2(F(F+1)I(I+1)J(J+1))intervalEJEJ1=βJEFEF1=AF(if  ESOEre)(if  AΔEquadrupole)\def\arraystretch{1.5} \begin{array}{ccc} \hline & \textup{Fine Structure - LS} & \textup{Hyper Fine Structure - IJ} \\ \hline \textup{interaction} & \beta\bm L\cdot \bm S & A\bm I \cdot\bm J\\ \textup{moment} & \bm J = \bm L + \bm S & \bm F = \bm I + \bm J \\ \textup{eigen-states} & \ket{LSJM_J} & \ket{IJFM_F} \\ \textup{energy} & \beta/2(J(J + 1) - L(L + 1) - S(S + 1)) & A/2(F(F + 1) - I(I + 1) - J(J + 1))\\ \textup{interval} & E_J - E_{J - 1} = \beta J & E_F - E_{F - 1} = AF\\ & (\textup{if}\; E_{S-O} \ll E_{re}) & (\textup{if}\; A \gg \Delta E_{quadrupole}) \\ \hline \end{array}