Formula Collection
>
Electromagnetic field theory
>
DC Current
PDF
Compact View
|
English
Svenska
Current Density
I
=
∫
J
⋅
e
n
d
S
I = \int \bm J \cdot e_n\: dS
I
=
∫
J
⋅
e
n
d
S
Conservation Equation
Δ
⋅
J
+
∂
ρ
∂
t
=
0
\bm\Delta\cdot\bm J + \frac{\partial\rho}{\partial t} = 0
Δ
⋅
J
+
∂
t
∂
ρ
=
0
∮
J
⋅
e
n
d
S
=
−
d
Q
d
t
\oint\bm J\cdot\bm e_n\: dS = -\frac{dQ}{dt}
∮
J
⋅
e
n
d
S
=
−
d
t
d
Q
Conductivity
J
=
σ
E
\bm J = \sigma \bm E
J
=
σ
E
Effect
P
=
∫
J
⋅
E
d
v
P = \int \bm J\cdot\bm E\: dv
P
=
∫
J
⋅
E
d
v
Boundary Conditions
{
e
n
2
⋅
(
J
1
−
J
2
)
=
0
(no surface current)
E
t
1
=
E
t
2
\begin{cases} \bm e_{n2}\cdot(\bm J_1 - \bm J_2) = 0 \quad \textup{(no surface current)} \\ \bm E_{t1} = \bm E_{t2} \end{cases}
{
e
n
2
⋅
(
J
1
−
J
2
)
=
0
(no surface current)
E
t
1
=
E
t
2
Time Constant
R
C
=
ϵ
r
ϵ
0
σ
RC = \frac{\epsilon_r\epsilon_0}{\sigma}
RC
=
σ
ϵ
r
ϵ
0
Analogy Elektrostatics - DC Current
E
,
V
E
,
V
D
J
ϵ
r
ϵ
0
σ
Q
I
C
G
\def\arraystretch{1.5} \begin{array}{|c|c|} \hline \bm E, V & \bm E, V \\ \bm D & \bm J \\ \epsilon_r\epsilon_0 & \sigma \\ Q & I \\ C & G \\ \hline \end{array}
E
,
V
D
ϵ
r
ϵ
0
Q
C
E
,
V
J
σ
I
G