Formula Collection
>
Electromagnetic field theory
>
Time Harmonic Fields
PDF
Compact View
|
English
Svenska
Planar Sinusoidal Wave
E
=
E
^
cos
(
ω
t
−
k
⋅
r
+
ϕ
)
e
E
instantanious value
\bm E = \hat{E}\cos(\omega t - \bm k\cdot\bm r + \phi)\bm e_E \quad \textup{instantanious value}
E
=
E
^
cos
(
ω
t
−
k
⋅
r
+
ϕ
)
e
E
instantanious value
E
=
E
0
e
−
j
k
⋅
r
e
E
complex value
\bm E = E_0e^{-j\bm k\cdot\bm r}\bm e_E \quad \textup{complex value}
E
=
E
0
e
−
j
k
⋅
r
e
E
complex value
E
0
=
E
^
e
j
ϕ
top value scale
E_0 = \hat{E}e^{j\phi} \quad \textup{top value scale}
E
0
=
E
^
e
j
ϕ
top value scale
E
0
=
E
^
2
e
j
ϕ
effective value scale
E_0 = \frac{\hat{E}}{\sqrt 2}e^{j\phi} \quad \textup{effective value scale}
E
0
=
2
E
^
e
j
ϕ
effective value scale
Propagation Rate
v
=
1
μ
0
μ
r
ϵ
0
ϵ
r
v
=
ω
k
k
=
∣
k
∣
v = \frac 1{\sqrt{\mu_0\mu_r\epsilon_0\epsilon_r}} \quad v = \frac {\omega}{k} \quad k = |\bm k|
v
=
μ
0
μ
r
ϵ
0
ϵ
r
1
v
=
k
ω
k
=
∣
k
∣
Wave Impedance Non-Conductive Space
η
=
μ
r
μ
0
ϵ
r
ϵ
0
\eta = \sqrt{\frac{\mu_r\mu_0}{\epsilon_r\epsilon_0}}
η
=
ϵ
r
ϵ
0
μ
r
μ
0
Rule of Right-Hand Systems
e
k
=
e
E
×
e
H
E
=
η
H
e
k
=
e
E
×
e
B
E
=
v
B
\bm e_k = \bm e_E\times\bm e_H \quad E = \eta H \qquad \bm e_k = \bm e_E\times\bm e_B \quad E = vB
e
k
=
e
E
×
e
H
E
=
ηH
e
k
=
e
E
×
e
B
E
=
v
B
Planar Wave in Space with Condctivity
E
=
E
0
e
γ
z
e
x
\bm E = E_0e^{\gamma z} \bm e_x
E
=
E
0
e
γ
z
e
x
Complex Propagation Constant
γ
=
j
ω
μ
r
μ
0
(
σ
+
j
ω
ϵ
r
ϵ
0
)
γ
=
α
j
β
\gamma = \sqrt{j\omega\mu_r\mu_0(\sigma + j\omega\epsilon_r\epsilon_0)} \quad \qquad \gamma = \alpha j\beta
γ
=
jω
μ
r
μ
0
(
σ
+
jω
ϵ
r
ϵ
0
)
γ
=
α
j
β
Waveinpedance, Space With Given Conductivity
η
=
j
ω
μ
r
μ
0
σ
+
j
ω
ϵ
r
ϵ
0
\eta = \sqrt{\frac{j\omega\mu_r\mu_0}{\sigma + j\omega\epsilon_r\epsilon_0}}
η
=
σ
+
jω
ϵ
r
ϵ
0
jω
μ
r
μ
0
Penetration Depth
δ
=
2
ω
μ
r
μ
0
σ
\delta = \sqrt{\frac 2{\omega\mu_r\mu_0\sigma}}
δ
=
ω
μ
r
μ
0
σ
2