Indefinite Integrals
∫ax+bxdx=ax−a2bln∣ax+b∣
∫x(ax+b)1dx=−b1ln∣∣xax+b∣∣
∫fx+gax+bdx=fax+f2bf−agln∣fx+g∣
∫(ax+b)(fx+g)xdx=bf−ag1[abln∣ax+b∣−fgln∣fx+g∣]
Definition:χ=⎩⎨⎧4ac−b22arctan4ac−b22ax+ba(p−q)1ln∣∣x−qx−p∣∣if4ac>b2if4ac<b2
Where
pand
qare the roots of
ax2+bx+c=0.
∫ax2+bx+c1dx=χ
∫ax2+bx+cxdx=2a1ln∣∣ax2+bx+c∣∣−2abχ
∫ax2+bx+cx2dx=ax−2a2bln∣∣ax2+bx+c∣∣+2a2b2−2acχ
∫(ax2+bx+c)21dx=(4ac−b2)(ax2+bx+c)2ax+b+(4ac−b2)2aχ
∫(ax2+bx+c)2xdx=−(4ac−b2)(ax2+bx+c)bx+2c−(4ac−b2)bχ
∫ax+bdx=3a2(ax+b)3/2
∫xax+bdx=15a22(3ax−2b)(ax+b)3/2
∫ax+b1dx=a2ax+b
∫ax+bxdx=3a22(ax−2b)ax+b
∫a2−x2dx=2xa2−x2+2a2arcsinax
∫xa2−x2dx=−31(a2−x2)3/2
∫a2−x21dx=arcsinax
∫a2−x2xdx=−a2−x2
∫xa2−x21dx=−a1ln∣∣xa+a2−x2∣∣
∫x2−a2dx=2xx2−a2−2a2ln∣∣x+x2−a2∣∣
∫x2−a21dx=ln∣∣x+x2−a2∣∣
∫x2+a2dx=2xx2+a2+2a2ln∣∣x+x2+a2∣∣
∫x2+a21dx=ln∣∣x+x2+a2∣∣
∫sinax1dx=a1ln∣∣tan2ax∣∣
∫cosax1dx=a1ln∣∣tan(2ax+4π)∣∣
∫tanaxdx=−a1ln∣cosax∣
∫cotaxdx=a1ln∣sinax∣
∫xsinxdx=sinx−xcosx
∫xsin2xdx=4x2−4xsin2x−8cos2x
∫sin2xdx=21(x−sinxcosx)
∫lnxdx=xln∣x∣−x
∫xeaxdx=a2eax(ax−1)
∫eaxsinbxdx=a2+b2eax(asinbx−bcosbx)
Definite Integrals
∫0∞x2n⋅e−ax2dx=2(2a)n(2n−1)!!aπ
Where
a>0,
n!=negative integer.
∫0∞x2n+1⋅e−ax2dx=2an+1n!
∫0∞xk⋅e−axdx=Γ(k+1)⋅a−(k+1)
Ik=∫0∞ex−1xkdx=Γ(k+1)⋅ζ(k+1)
Jk=∫0∞ex+1xkdx=(1−2−k)⋅Ik
ζ(k)=n=1∑∞nk1
∫0π/2sin2a+1x⋅cos2b+1xdx=2Γ(a+b+2)Γ(a+1)⋅Γ(b+1)
Stirling's approximation
N!≈2πN(eN)NN≫1
Error Function
erf(x)=π2∫0xe−ξ2dξ
erfc(x)=1−erf(x)=π2∫x∞e−ξ2dξ
erf(∞)=1