Trigonometric Functions
sin2α+cos2α=1
sin(α±β)=sinαcosβ±cosαsinβ
cos(α±β)=cosαcosβ∓sinαsinβ
tan(α±β)=1∓tanαtanβtanα±tanβ
sin(2α)=2sinαcosα
cos(2α)=cos2α−sin2α=2cos2α−1=1−2sin2α
sin(3α)=3sinα−4sin3α
cos(3α)=4cos3α−3cosα
sin22α=21(1−cosα)
cos22α=21(1+cosα)
sinα+cosβ=2sin21(α+β)cos21(α−β)
sinα−cosβ=2cos21(α+β)sin21(α−β)
cosα+cosβ=2cos21(α+β)cos21(α−β)
cosα−cosβ=−2sin21(α+β)sin21(α−β)
sinα=2i1(eiα−e−iα)
cosα=21(eiα+e−iα)