Formula Collection
>
Waves and Optics
>
Oscillations
PDF
Compact View
|
English
Svenska
Simple harmonic occilations are described by
d
2
y
d
t
2
+
ω
2
y
=
0
\frac{d^2y}{dt^2}+\omega^2y=0
d
t
2
d
2
y
+
ω
2
y
=
0
With real solutions on the form
y
=
A
sin
(
ω
t
+
α
)
y = A\sin (\omega t + \alpha)
y
=
A
sin
(
ω
t
+
α
)
Angular Frequency
ω
=
2
π
T
=
2
π
f
\omega=\frac{2\pi}{T}=2\pi f
ω
=
T
2
π
=
2
π
f
Energy for Elastic Pendulum
W
p
o
t
=
k
y
2
2
W_{pot} = \frac{ky^2}{2}
W
p
o
t
=
2
k
y
2
W
t
o
t
=
m
2
A
2
ω
2
W_{tot}=\frac{m}{2}A^2\omega^2
W
t
o
t
=
2
m
A
2
ω
2
ω
=
k
m
\omega=\sqrt{\frac{k}{m}}
ω
=
m
k
Wave Number
k
=
2
π
λ
k=\frac{2\pi}{\lambda}
k
=
λ
2
π