Formula Collection
>
Waves and Optics
>
Sound and Doppler Effect
PDF
Compact View
|
English
Svenska
Doppler Effect
f
m
=
f
s
v
−
v
m
v
−
v
s
f_m = f_s\frac{v-v_m}{v-v_s}
f
m
=
f
s
v
−
v
s
v
−
v
m
Supersonic Speed
sin
θ
=
v
s
o
u
n
d
v
[
p
l
a
n
a
r
/
[
p
l
a
n
]
]
=
1
M
α
\sin\theta = \frac{v_{sound}}{v_{[planar/[plan]]}}=\frac{1}{M\alpha}
sin
θ
=
v
[
pl
ana
r
/
[
pl
an
]]
v
so
u
n
d
=
M
α
1
Compressibility coefficient
κ
=
−
1
Δ
P
⋅
Δ
V
V
\kappa = -\frac{1}{\Delta P}\cdot \frac{\Delta V}{V}
κ
=
−
Δ
P
1
⋅
V
Δ
V
Sound Pressure
p
=
−
1
κ
⋅
∂
s
∂
x
p = - \frac{1}{\kappa} \cdot \frac{\partial s}{\partial x}
p
=
−
κ
1
⋅
∂
x
∂
s
p
=
∓
p
0
cos
[
2
π
(
t
T
±
x
λ
)
]
p = \mp p_0 \cos \left[2\pi\left(\frac{t}{T} \pm \frac{x}{\lambda}\right)\right]
p
=
∓
p
0
cos
[
2
π
(
T
t
±
λ
x
)
]
Pressure Amplitude
p
0
=
2
π
s
0
κ
λ
=
Z
s
0
ω
p_0 = \frac{2\pi s_0}{\kappa \lambda} = Z s_0 \omega
p
0
=
κλ
2
π
s
0
=
Z
s
0
ω
Acoustic Impedance
Z
=
ρ
v
Z = \rho v
Z
=
ρ
v
Speed of Sound (Fluid and Gas)
v
=
1
κ
ρ
v = \frac{1}{\sqrt{\kappa\rho}}
v
=
κ
ρ
1
v
=
c
p
R
T
c
v
M
v = \sqrt{\frac{c_pRT}{c_v M}}
v
=
c
v
M
c
p
RT
Speed of Sound (String and Rod)
v
=
F
μ
v = \sqrt{\frac{F}{\mu}}
v
=
μ
F
v
=
E
ρ
v = \sqrt{\frac{E}{\rho}}
v
=
ρ
E
Sound Intensity
I
=
Z
2
s
0
2
ω
2
I = \frac{Z}{2} s_0^2 \omega^2
I
=
2
Z
s
0
2
ω
2
I
=
p
0
2
2
Z
I = \frac{p_0^2}{2Z}
I
=
2
Z
p
0
2
Sound Intensity Level
L
I
=
10
l
g
I
I
0
L_I = 10 lg \frac{I}{I_0}
L
I
=
10
l
g
I
0
I
med
I
0
=
1
,
0
⋅
1
0
−
12
W
/
m
2
\textup{med$I_0 = 1,0 \cdot 10^{-12}\,W/m^2$}
med
I
0
=
1
,
0
⋅
1
0
−
12
W
/
m
2
Refraction and Transmittance of Sound
R
≡
I
r
e
f
I
i
n
=
(
Z
2
−
Z
1
Z
2
+
Z
1
)
2
R \equiv \frac{I_ref}{I_in} = \left( \frac{Z_2-Z_1}{Z_2+Z_1} \right)^2
R
≡
I
i
n
I
r
e
f
=
(
Z
2
+
Z
1
Z
2
−
Z
1
)
2
T
≡
I
t
r
I
i
n
=
1
−
R
T \equiv \frac{I_tr}{I_in} = 1-R
T
≡
I
i
n
I
t
r
=
1
−
R
Harmonics (Strings and Open Cylinders)
f
m
=
m
⋅
f
1
m
=
2
,
3
,
4
,
.
.
.
f_m = m \cdot f_1 \,\,\,\,\,\, m = 2, 3, 4, ...
f
m
=
m
⋅
f
1
m
=
2
,
3
,
4
,
...
Harmonics (Half Open Cylinders)
f
m
=
(
2
m
−
1
)
⋅
f
1
m
=
2
,
3
,
4
,
.
.
.
f_m = (2m-1) \cdot f_1 \,\,\,\,\,\, m = 2, 3, 4, ...
f
m
=
(
2
m
−
1
)
⋅
f
1
m
=
2
,
3
,
4
,
...